
Details on class implementation,

Interfaces and Polymorphism

Check out OnToInterfaces from SVN

 Scope
◦ Variables, fields and methods, class names

 Packages

 Interfaces and polymorphism

 Scope : the region of a program in which a
name can be accessed
◦ Parameter scope : the whole method body

◦ Local variable scope : from declaration to block end:

 public double area() {

double sum = 0.0;

Point2D prev =

this.pts.get(this.pts.size() - 1);

for (Point2D p : this.pts) {

sum += prev.getX() * p.getY();

sum -= prev.getY() * p.getX();

prev = p;

}

return Math.abs(sum / 2.0);

} Q1

 Member scope : anywhere in the class,
including before its declaration
◦ This lets methods call other methods later in the

class.

 public class members can be accessed
outside the class using “qualified names”

◦ Math.sqrt()

System.in

◦ list.size()

p.x

Q2

Static

Instance
Where list is an ArrayList

and p is a Point

public class TempReading {

private double temp;

public void setTemp(double temp) {

… temp …

}

// …

}

this.temp = temp;

What does this
“temp” refer

to?
Reminder: Always qualify field

references with this. It
prevents accidental shadowing.

Q3

 Static imports let us use unqualified names:

◦ import static java.lang.Math.PI;

◦ import static java.lang.Math.cos;

◦ import static java.lang.Math.sin;

Can then refer to just

PI

cos

sin

 See the Polygon.drawOn() method

 Let us group related
classes

 We’ve been using them:

◦ javax.swing

◦ java.awt

◦ java.lang

 Can (and should) group
our own code into
packages
◦ Eclipse makes it easy…

Q4

 Remember the problem with Timer?
◦ Two Timer classes in different packages

◦ Was OK, because packages had different names

 Package naming convention: reverse URLs
◦ Examples:

 edu.roseHulman.csse.courseware.scheduling

 com.xkcd.comicSearch

Specifies the
company or
organization

Groups related
classes as

company sees fit

Q5

 Can use import to get classes from other
packages:

◦ import java.awt.Rectangle;

 Suppose we have our own Rectangle class
and we want to use ours and Java’s?
◦ Can use “fully qualified names”:

 java.awt.Rectangle rect =

new java.awt.Rectangle(10, 20, 30, 40);

◦ U-G-L-Y, but sometimes needed.

I don’t even want this
package. Why did I

sign up for the
stinging insect of the
month club anyway?

 Motivation: say I write a sort method for
Students, which compares them by student
ID. Relies on the fact that students can be
compared with each other.

 What if I want to sort BankAccounts by
balance instead?

 Specify a contract to implement every method
in the interface

 Some code (called client of the interface) can
use variables that implement the interface.

 Other code can implement the interface

 This clean separation allows the code that
implements the interface to be changed
without changing the client code at all!

 Why might I want to re-use the client code?

Q6

public interface Comparable<T> {

/**

* Compares this object with the specified

* object for order. Returns a negative integer,

* zero, or a positive integer as this object is

* less than, equal to, or greater than the

* specified object.

*/

int compareTo(T object);

}

public class BigInteger implements Comparable<BigInteger> {

…

}

interface, not class

No method
body, just a
semi-colon

No “public”,
automatically

are so

BigInteger promises to implement all the
methods declared in the Comparable interface:

Type parameter –
Comparable to type T

objects

<<interface>>
Comparable<T>

Student BigInteger

Arrays (includes
sort)

Q7

Distinguishes
interfaces

from classes

Hollow, closed
triangular tip

means
BigInteger is a
Comparable

BigRational

 Comparable c = new Student(…);

if (c.compareTo(other) < 0) { … }

c = new BigInteger(…);

if (c.compareTo(other) < 0) { … }

 The type of the actual object determines the
method used.

Q8a-c

 Origin:
◦ Poly  many

◦ Morphism  shape

 Classes implementing an interface give many
differently “shaped” objects for the interface
type

 Late Binding: choosing the right method
based on the actual type of the implicit
parameter at run time

Q8d-10

 Tonight’s homework

 Our unit tests are a Client to Arithmetic
objects and Comparable objects.

 You will write a BigRational class that
implements each interface.

 Let’s look at the starting code…

